Site-Level Interim Synthesis Update

Kevin Schaefer, Dan Riciutto, Ken Davis, Peter Thornton Coordinators

Presentation to NACP SSG, 20 Aug 2008

Site-level synthesis: Objectives

- Starting at the spatial scale of individual sites, establish quantitative framework that allows NACP investigators to answer the question:
 - "Are the various measurement and modeling estimates of carbon fluxes consistent with each other - and if not, why?"
- Improve quantification of uncertainty for forward models and site-based measurements.
- Identify strengths and weaknesses in models and measurements.
- Migrate new knowledge up-scale in coordination with regional and continentalscale efforts.

Site-level MDC: Approach

- Anchor the comparison at AmeriFlux sites
 - Multiple years of energy, water and carbon fluxes
 - Ancillary physical and biological measurements ("template" exists, encourage site PIs to fill it in)
 - Initial selection of 25-30 potential sites
- Introduce data from inventories as available.
- Measurement teams produce their own best estimates of fluxes and flux uncertainty at each site.
 - Standardized filtering and gap-filling.
 - Standardized approach to uncertainty estimates
 - Random error
 - Systematic error (e.g. due to instrumentation, advection, data filtering, gap-filling)

Site-level MDC: Approach (cont.)

- Modeling teams produce their own best estimates of fluxes and flux uncertainty at each site for each model.
 - Protocol specifies model inputs and provides goals and examples for obtaining model uncertainty.
 - Each group can tackle the uncertainty problem however they see fit and are best able.
 - Groups encouraged to categorize multiple sources of uncertainty, for example due to:
 - Parameter estimation
 - Model structure and/or process representation
 - Initial / boundary conditions (e.g. representation of disturbance history, veg type, or diagnostic LAI)
 - Surface weather drivers
 - Each model has unique characteristics, and each modeling team has unique capabilities - avoid overspecifying the model uncertainty approach. 4

Site-level MDC: Approach (cont.)

- Measurement modeling synthesis
 - Multiple teams will tackle several aspects of modeldata comparison in parallel.
 - Protocol includes some example statistical tests that can incorporate the measured and modeled fluxes and their uncertainties to determine if they are consistent.
 - Teams will have flexibility to introduce additional statistical methods in the analysis, as needed.
 - Evaluation at multiple time scales:
 - Multi-year annual mean
 - Interannual variability
 - Seasonal
 - Synoptic
 - Diurnal
 - Workshop to initiate analysis

Progress report

- Preliminary site list compiled (~35 sites)
- Agreement from all site PIs to either actively participate in synthesis or to provide data
 - Collaboration with Canadian Carbon Program approved by its Board of Directors (as of 14 Aug 2008).
- Gap-filled flux data and surface weather data now available for all site-years
- ~70 participants, ~15 models, substantial overlap with regional synthesis group

Progress report (cont'd)

 Subset of models have been run for Howland site as preliminary test of protocol.

Howland: GPP comparison

Howland: NEE comparison

Howland: NEE comparison – site extracted from regional modeling results

Next steps

- Finalize site selection, modeling participants, and timeline (August)
- Simulations for all sites (September)
- Preliminary analysis of model and observation uncertainty (October)
- Workshop: detailed analysis of results (November)
- Additional analysis (December-January)
- Results ready for Feb 2009 NACP Investigators' meeting